Delivering Safe and Reliabe Electric Vehicle Supply Equipment to North America and European Markets
- 주제(키워드) Electric Vehicle Supply Equipment
- 발행기관 고려대학교 공학대학원
- 지도교수 도락주
- 발행년도 2016
- 학위수여년월 2016. 2
- 학위구분 석사
- 학과 공학대학원 전기공학전공
- 원문페이지 54 p
- 실제URI http://www.dcollection.net/handler/korea/000000064959
- 본문언어 영어
- 제출원본 000045867211
초록/요약
업계의 전문가들은 전기차가 친환경적이며 고효율의 강점이 있기 때문에 2020년까지는 엔진 차량을 대체할 것으로 예측한다. 나아가 2050년 까지는 전기 차의 보급이 차량에서 배출되는 45 metric tons (8천2백 5십만대의 차량을 줄이는 효과) 의 그린하우스 가스 배출을 줄일 수 있다. 최근 친환경 에너지에 관심을 갖는 소비자들은 가스배출을 줄이는 대안으로 전기차를 해결책으로 떠올리고 있다. 하지만 이런 경제적 그리고 환경적 이점에도 불구하고 공용 혹은 개인 주차장의 전기차 충전기 설치는 안전 문제에 대한 여러 문제가 노출되고 있다. 전기안전 단체 그리고 인증 업계에서는 그 동안 안전 관련 평가와 연구를 지속해왔으며 그 결과 많은 규격 및 시험이 개발 중이다. 이러한 이유로 전기 차 충전기 제조사들은 다양한 국제 규격과 표준에 맞도록 설계를 하는 과정에서 많은 어려움을 겪고 있는 게 현실이다. 다양한 국제 규격을 만족시키는 것은 지역별로 다른 요구조건들이 적용되기 때문에 결코 쉽지 않은 문제이다. 다양한 요구조건을 적용하는 과정에서 추가적인 비용 발생, 제품 출시 일정 연기 그리고 불필요한 재시험 등을 야기시킬 수 있다. 다행이 많은 요구조건들을 자세히 살펴보면 공통적으로 겹치는 부분이 상당하다. 하지만 국제적으로 안전 규격 통합작업이 진행되고 있으면서도 현재로써는 국제적으로 인정되는 하나의 통합 규격은 존재하지 않다. 그렇기에 제조사들이 참고할 수 있는 요구 기준이 있다면 이러한 문제점들을 해결하는데 큰 도움이 될 것이다. 이 논문은 In-Cable Control Box (ICCB)라고 알려진 휴대용 전기 차 충전기에 대한 UL 과 IEC 규격을 모두 만족시킬 수 있는 엔지니어링 기준을 제시한다. UL 2594와 IEC 61851-1 그리고 IEC 61851-22 규격은 휴대용 충전기를 포함한 포괄적인 전기 차 충전기에 대하여 적용되는 국제 안전 규격이다. 이 논문에서는 UL 규격과IEC 규격의 요구조건을 비교하고 분석하여 결론에 도달하며 결론 도출 과정에서 충전기에 사용되는 전기 차 케이블 혹은 전기 차 커넥터 등의 부품에 대한 요구조건들도 같이 다루어진다. 이 연구에서는 SAE J1772 타입의 커넥터를 사용하는 휴대용 전기 차 충전기에 특화되었다. 충전기의 타입에 따라 다른 규격과 요구조건들이 적용될 수 있으며 EMC 요구조건에 대해서는 다루지 않는다. 이번 연구를 통해서 모든 전기 차 충전기 제조사들에게 제품 설계와 시험에 대한 돌파구를 제공하기를 바라며 이 논문의 결론은 UL 과 IEC 규격을 동시에 만족시키고 불필요한 시험과 비용을 최소화 시켜줄 엔지니어링 기준을 제공할 것이다. 분명한 것은 국제적으로 UL 과 IEC 규격이 통합되기 전까지는 하나의 규격이 다른 규격을 대신할 수는 없다. 하지만 시장의 글로벌화와 전기 차의 보급과 함께 추후에는 국제적으로 통합된 규격이 제시될 것으로 예상한다. 전기 차 충전기의 국제적인 통합이 되기 전까지는 이 논문의 결과가 국제적으로 인정되는 전기 차 충전기를 개발하는데 크게 기여할 것이다.
more초록/요약
Some experts predict that by 2020, as many as 1 million US consumers will drive Electric Vehicles (EV) as a clean and cost-efficient alternative to engine-powered vehicles. By 2050, widespread adoption of electric vehicles can reduce greenhouse gas emissions from vehicles by more than 45 metric tons (the equivalent of removing 82.5 million vehicles from the road). Now EVs are poised to become a solution for consumers wanting to reduce their energy footprint. But along with the upside for the environment and money saving, it also comes with safety concerns about the EV charging equipment being installed in homes and public charging stations. Many safety regulatory authorities and certifying organizations across the world have done researches on testing, evaluating the safety of equipment, and have developed many safety standards as outcomes. For this reason, manufacturers are facing tough challenges of getting their products complied with various international standards. Meeting various international standards is not easy as different requirements are applied, depending on the regions. In fact, many manufacturers are struggling to keep up with these standards. Complying with multiple standards can be expensive, slow down the product launch and cause redundant testing. As bad as it may sound, requirements are, fortunately, often overlapped. However, despite of the efforts to harmonize all related safety standards for EVSE, there has not been a globally recognized standard or any reference documents yet. Therefore having a guideline or a common engineering standard makes a positive difference for EVSE manufacturers to save their resources and avoid any unnecessary conflicts. In this thesis, an engineering standard which complies with both UL and IEC standards for portable EV cord set, also known as In-Cable Control Box (ICCB) is proposed to save EVSE manufacturers from struggling with separate standards. UL 2594, IEC 60851-1 and 60851-22 are the evaluation standards and they address safety-related requirements for EVSEs including EV cord sets. In the process of developing the engineering standard, the study uses the comparison method to derive solutions. The UL requirements and IEC requirements are each presented and compared one by one. These comparisons give better understanding and common solutions which can meet both UL and IEC requirements. This thesis may cover some of the components used together to complete EV cord set such as EV cables or EV couplers. The discussion is specifically applicable to an EV cord set employing a SAE J1772 type (Configuration) EV coupler which is categorized as a slow charger. It should be noted that different standards and requirements are applied, depending on the type of chargers and the configuration. This study does not contain EMC requirements as well. Chapter 2 covers fundamental background knowledge for EV charging system as there are several types of EV charging, and this often confuses many manufacturers. Charging levels and configurations defined by international standards are discussed. Furthermore, the safety features which differentiate AC slow charger from DC quick charger are covered as AC slow charger and DC quick charger inherently have different hazardous factors for safety issues. Since this thesis specifically studies the solution for the UL and IEC certification of an EV cord set (slow charger), the details of safety features required for an EV cord set are the main subjects. For starter, it begins with the basic definitions of AC charging and its charging levels as SAE J1772 and IEC 61851-1 describes its scope, general requirements and mostly importantly, the operating mechanism of how AC charging shall be designed. Especially EVSE is required to have safety features that employ Control Pilot (CP) signal as a communication mean between EV cord sets and EV. Chapter 2 then covers personnel protection systems required for EV cord set which shall meet the requirements of UL 2231-1 and UL 2231-2. Therefore UL 2231-1 and UL 2231-2 will also be discussed briefly for this purpose. Chapter 3 and chapter 4 identify the safety measures against electric shock and fire hazard, and review the requirements from UL and IEC standards. As UL standards and IEC standards are composed in very different manners, understanding each clause brings many challenges which most of manufacturers have been struggling with. As a rule of thumb, safety investigation of the products consists of two parts, construction (design) and performance (testing). Chapter 3 and 4 present each corresponding requirement for the construction and the performance. Chapter 3 focuses on construction requirements while Chapter 4 concentrates on performance requirements. This thesis hopes to offer a breakthrough to all EV cord set manufacturers in designing and testing. As for the purpose of this thesis, the results of this study will provide an engineering standard which simultaneously satisfies UL and IEC requirements, and the results surely can minimize redundancies and conflicts which will allow many manufactures to save their cost and time. Clearly, there is no way that one standard represents other standards unless all the standards are completely harmonized. With continued globalization and expansion of markets, many standards are becoming harmonized in some industries and this is not the case for EV industry. Until the harmonization comes, the results of this thesis will be a great contribution to developing globally recognized EV cord sets.
more목차
Contents
Abstract • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i
Contents • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • iv
List of Figures • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • v
List of Tables • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • vi
1 Introduction• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1
1.1 Global transition to electric vehicles • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1
1.2 SAE versus CHAdeMO • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2
1.3 Electric vehicle safety • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 3
1.4 US and European market access • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 4
2. Operational and functional requirements • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 5
2.1 AC charging level • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 5
2.2 Electrical ratings • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 6
2.3 Control pilot and proximity • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 7
2.4 Personnel protection against electric shock • • • • • • • • • • • • • • • • • • • • • • • • • • • 11
2.5 Operating mechanism of CCID • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 13
2.6 Operating mechanism of GMI • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 16
3. Construction requirements • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 17
3.1 General construction • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 17
3.2 Electrical enclosure • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 17
3.3 Supply and output connection • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 21
3.4 Grounding and bonding • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 24
3.5 Control circuits • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 25
3.6 spacings • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 27
4. Performance requirements • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 28
4.1 general requirements • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 28
4.2 Testing for IEC 61851-1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 29
4.3 Testing for IEC 61851-22 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 34
4.4 Testing for UL 2594 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 36
5. Conclusion • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 41